Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hexakis(μ_2 -2-aminoethanethiolato)triiron(III) tris(perchlorate)

Asako Igashira-Kamiyama* and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Correspondence e-mail: igashira@chem.sci.osaka-u.ac.jp

Received 21 October 2008; accepted 4 November 2008

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.032; wR factor = 0.100; data-to-parameter ratio = 14.3.

In the title salt, $[Fe_3(C_2H_6NS)_6](ClO_4)_3$, the trinuclear cation lies on a special position of $\overline{3}$ site symmetry; the central Fe atom is coordinated by six thiolate groups from the two flanking *fac-(S)-*[Fe(C₂H₆NS)₃] units. In the flanking units, the three C₂H₆NS groups each chelate to the metal atom. The cations interact with the perchlorate anions through weak N-H···O hydrogen bonds resulting in a three-dimensional network. In the asymmetric unit two cations are present, one of which is disordered over two positions with occupancies of 0.75 and 0.25.

Related literature

For related structures, see: Busch & Jicha (1962); Heeg *et al.* (1985); Mahboob *et al.* (2004); Marsh *et al.* (1986); Matsuura *et al.* (2006).

Experimental

Crystal data $[Fe_3(C_2H_6NS)_6](CIO_4)_3$ $M_r = 922.73$ Trigonal, $R\overline{3}$ a = 14.2852 (6) Å c = 26.2187 (8) Å V = 4633.6 (2) Å³

 $R_{\rm int} = 0.053$

15327 measured reflections

2365 independent reflections

2144 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.677, T_{max} = 0.816$

Refinement

R[w]

S

23 16

$F^2 > 2\sigma(F^2)$] = 0.032	6 restraints
$R(F^2) = 0.100$	H-atom parameters constrained
= 1.39	$\Delta \rho_{\rm max} = 1.09 \ {\rm e} \ {\rm \AA}^{-3}$
65 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
5 parameters	

Table 1

Selected bond lengths (Å).

Fe1-S1	2.2764 (5)	Fe4-N2	2.026 (4)
Fe2-N1	2.0482 (18)	Fe4-N2B	2.059 (11)
Fe2-S1	2.2434 (6)	Fe4-S2B	2.229 (2)
Fe3-S2B	2.281 (2)	Fe4-S2	2.2535 (8)
Fe3-S2	2.2869 (7)		

able 2			
Hydrogen-bond	geometry	/ (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O2	0.92	2.28	3.130 (3)	154
N1-H2···O3 ⁱⁱⁱ	0.92	2.40	3.162 (3)	140
$N2-H7\cdots O1^{ii}$	0.92	2.30	3.110 (4)	147
$N2 - H8 \cdots O2$	0.92	2.39	3.274 (4)	161
$N2B - H13 \cdots O2$	0.92	2.41	2.984 (12)	121
$N2B - H14 \cdots O1$	0.92	2.27	3.112 (11)	152

Symmetry codes: (ii) -x + y, -x + 1, z; (iii) $x - y + \frac{1}{3}$, $x + \frac{2}{3}$, $-z + \frac{2}{3}$.

Data collection:*PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *Yadokari-XG* (Wakita, 2000).

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 20750047) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2504).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Busch, D. C. & Jicha, D. C. (1962). Inorg. Chem. 1, 884-887.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Heeg, M. J., Blinn, E. L. & Deutsch, E. (1985). Inorg. Chem. 24, 1118-1120.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mahboob, N., Miyashita, Y., Yamada, Y., Fujisawa, K. & Okamoto, K. (2004). Inorg. Chim. Acta, 357, 75–82.
- Marsh, R. E., Heeg, M. J. & Deutsch, E. (1986). Inorg. Chem. 25, 118.
- Matsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem. 45, 401–408.

Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). *CrystalStructure*. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Wakita, K. (2000). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.

Acta Cryst. (2008). E64, m1519-m1520 [doi:10.1107/S1600536808036167]

Hexakis(μ_2 -2-aminoethanethiolato)triiron(III) tris(perchlorate)

A. Igashira-Kamiyama and T. Konno

Comment

Due to the high Lewis basicity of thiolate groups, a great number of thiolate-bridged complexes have been synthesized up to now. 2-Aminoethanethiolate (aet) is the simplest N,*S*-chelating ligand that has been used for the formation of S-bridged polynuclear structures. For example, it has been shown that the aet ligand reacts with the octahedral metal ions to give linear-type S-bridged trinuclear structures, such as Co^{III}_3 (Busch and Jicha, 1962; Heeg *et al.*, 1985; Marsh *et al.*, 1986), Rh^{III}₃ (Mathoob *et al.*, 2004), and Ru^{III}₃ (Matsuura *et al.*, 2006). In this paper, we report on the crystal structure of the title compound (I), which was obtained by the reaction of aet and Fe(ClO₄)₃. The asymmetric unit of the complex cations is disordered over two positions with occupancies of 0.75 and 0.25. In the complex cation of (I), two *fac*(*S*)-[Fe(aet)₃] units coordinate to a central Fe atom through thiolato bridges to form a linear-type trinuclear structure. Each terminal Fe atom is in an N₃S₃ octahedral environment, whereas the central Fe atom is in an S₆ octahedral environment. Considering the charge balance, it is assumed that all Fe atoms have a +III oxidation state.

Experimental

To a solution containing 2-aminoethanethiol hydrochloride (0.11 g, 1 mmol) in 20 ml of methanol/CH₂Cl₂ (1:1) was added a solution of Et₃N (0.10 g, 1 mmol) in 10 ml of methanol and a solution of Fe(ClO₄)₃.6H₂O (0.09 g, 0.2 mmol) in 2 ml of methanol. The resulting dark brown solution was stood at room temperature overnight to give black crystals, which was filtered and washed with methanol. Yield: 31 mg (50% based on Fe). Anal. Calcd for [Fe₃(aet)₆](ClO₄)₃ = C₁₂H₃₆Cl₃Fe₃N₆O₁₂S₆: C, 15.62; H, 3.93; N, 9.11%. Found: C, 15.82; H, 3.88; N, 9.00%.

Refinement

H atoms bonded to C and N atoms were placed at calculated positions [C—H = 0.99 and N—H = 0.92 Å] and refined as riding with $U_{iso}(H) = 1.2U_{eq}$ (C,N). One cationic part was disordered over two positions (S2, N2, C3, C4 and S2B, N2B, C3B, C4B) and refined with site occupancies of 0.75 and 0.25. The C3B atom in a minor component was restrained based on ISOR.

Figures

Fig. 1. The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen atoms are omitted for clarity.

Fig. 2. The cation units of (I). The molecule with open bonds is the minor component of the disordered unit. Symmetry codes: (i) -y + 1, x-y + 1, z; (ii) -x + y, -x + 1, z; (iii) -x + 2/3, -y + 4/3, -z + 1/3; (iv) y - 1/3, -x + y + 1/3, -z + 1/3; (v) x-y + 2/3, x + 1/3, -z + 1/3; (vi) -x + 2/3, -y + 4/3, -z + 4/3; (vii) y - 1/3, -x + y + 1/3, -z + 4/3; (viii) x-y + 2/3, x + 1/3, -z + 4/3.

Hexakis(µ2-2-aminoethanethiolato)triiron(III) tris(perchlorate)

Crystal data	
[Fe ₃ (C ₂ H ₆ NS) ₆](ClO ₄) ₃	Z = 6
$M_r = 922.73$	$F_{000} = 2826$
Trigonal, $R\overline{3}$	$D_{\rm x} = 1.984 {\rm ~Mg~m}^{-3}$
Hall symbol: -R 3	Mo $K\alpha$ radiation $\lambda = 0.71075$ Å
<i>a</i> = 14.2852 (6) Å	Cell parameters from 12827 reflections
b = 14.2852 Å	$\theta = 3.4 - 27.4^{\circ}$
c = 26.2187 (8) Å	$\mu = 2.12 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 200 (2) K
$\beta = 90^{\circ}$	Prism, black
$\gamma = 120^{\circ}$	$0.20\times0.20\times0.10\ mm$
$V = 4633.6 (2) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	2365 independent reflections
Radiation source: fine-focus sealed tube	2144 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.053$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}$
T = 200(2) K	$\theta_{\min} = 3.4^{\circ}$
ω scans	$h = -18 \rightarrow 16$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -18 \rightarrow 17$
$T_{\min} = 0.677, T_{\max} = 0.816$	<i>l</i> = −33→33
15327 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.100$	$w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 3.0528P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.39	$(\Delta/\sigma)_{\text{max}} = 0.001$
2365 reflections	$\Delta \rho_{max} = 1.09 \text{ e } \text{\AA}^{-3}$
165 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. The 2-aminoethanethiolate ligand of one unit containing Fe3 and Fe4 atoms is disordered over two positions with the occupancies of 0.75 and 0.25. The C3B atom in the minor component is restrained based on ISOR.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe1	0.3333	0.6667	0.1667	0.01712 (18)	
Fe2	0.3333	0.6667	0.269870 (17)	0.01673 (15)	
S1	0.21510 (4)	0.53292 (4)	0.219319 (19)	0.02149 (15)	
N1	0.20358 (15)	0.64420 (15)	0.31253 (7)	0.0255 (4)	
H1	0.2151	0.6336	0.3460	0.031*	
H2	0.1986	0.7059	0.3110	0.031*	
C1	0.09906 (18)	0.5506 (2)	0.29524 (9)	0.0308 (5)	
Н3	0.0382	0.5595	0.3071	0.037*	
H4	0.0903	0.4828	0.3100	0.037*	
C2	0.09795 (17)	0.5441 (2)	0.23732 (9)	0.0302 (5)	
Н5	0.1026	0.6098	0.2222	0.036*	
Н6	0.0306	0.4802	0.2253	0.036*	
Fe3	0.3333	0.6667	0.6667	0.02171 (19)	
Fe4	0.3333	0.6667	0.563330 (19)	0.02155 (16)	
S2	0.20595 (6)	0.53902 (6)	0.61393 (3)	0.02341 (18)	0.75

N2	0.2103 (3)	0.6563 (3)	0.52058 (14)	0.0300 (8)	0.75
H7	0.2163	0.7234	0.5193	0.036*	0.75
H8	0.2176	0.6377	0.4878	0.036*	0.75
C3	0.0975 (3)	0.5650 (4)	0.59679 (17)	0.0394 (9)	0.75
Н9	0.0267	0.5041	0.6076	0.047*	0.75
H10	0.1083	0.6319	0.6135	0.047*	0.75
C4	0.1011 (4)	0.5773 (4)	0.5393 (2)	0.0425 (11)	0.75
H11	0.0776	0.5062	0.5233	0.051*	0.75
H12	0.0496	0.6011	0.5289	0.051*	0.75
S2B	0.2622 (3)	0.7412 (2)	0.61334 (10)	0.0335 (5)	0.25
N2B	0.1951 (9)	0.6067 (9)	0.5199 (5)	0.035 (3)	0.25
H13	0.2127	0.6372	0.4879	0.041*	0.25
H14	0.1655	0.5332	0.5163	0.041*	0.25
C3B	0.1180 (11)	0.6301 (17)	0.5950 (6)	0.065 (4)	0.25
H15	0.1036	0.5589	0.6078	0.078*	0.25
H16	0.0638	0.6462	0.6098	0.078*	0.25
C4B	0.1130 (14)	0.6295 (15)	0.5432 (8)	0.060 (5)	0.25
H17	0.1257	0.7006	0.5311	0.072*	0.25
H18	0.0399	0.5737	0.5321	0.072*	0.25
Cl1	0.17461 (5)	0.41937 (4)	0.42062 (2)	0.03377 (17)	
01	0.12758 (17)	0.38390 (16)	0.47031 (7)	0.0460 (5)	
O2	0.20389 (18)	0.53133 (14)	0.41480 (8)	0.0492 (5)	
O3	0.0981 (2)	0.35574 (17)	0.38241 (8)	0.0604 (6)	
O4	0.26978 (18)	0.41114 (19)	0.41632 (9)	0.0583 (6)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Fe1	0.0171 (2)	0.0171 (2)	0.0173 (4)	0.00853 (12)	0.000	0.000
Fe2	0.01850 (19)	0.01850 (19)	0.0132 (3)	0.00925 (9)	0.000	0.000
S1	0.0233 (3)	0.0207 (3)	0.0166 (3)	0.0081 (2)	-0.00003 (18)	0.00068 (17)
N1	0.0293 (10)	0.0302 (10)	0.0174 (9)	0.0151 (8)	0.0022 (7)	0.0004 (7)
C1	0.0224 (11)	0.0387 (13)	0.0235 (12)	0.0094 (10)	0.0051 (8)	0.0034 (9)
C2	0.0180 (10)	0.0410 (13)	0.0235 (11)	0.0088 (10)	0.0020 (8)	0.0009 (9)
Fe3	0.0190 (2)	0.0190 (2)	0.0272 (4)	0.00950 (12)	0.000	0.000
Fe4	0.0229 (2)	0.0229 (2)	0.0189 (3)	0.01145 (10)	0.000	0.000
S2	0.0220 (4)	0.0236 (4)	0.0205 (4)	0.0082 (3)	-0.0005 (3)	-0.0008 (3)
N2	0.0387 (19)	0.033 (2)	0.0200 (15)	0.0197 (19)	-0.0061 (12)	-0.0045 (16)
C3	0.0233 (18)	0.052 (2)	0.040 (2)	0.0165 (19)	-0.0008 (14)	0.001 (2)
C4	0.031 (2)	0.060 (3)	0.036 (2)	0.023 (3)	-0.0093 (15)	-0.007 (2)
S2B	0.0387 (15)	0.0385 (14)	0.0369 (14)	0.0294 (14)	-0.0028 (11)	0.0001 (11)
N2B	0.034 (5)	0.030 (6)	0.037 (5)	0.014 (6)	-0.011 (4)	-0.014 (5)
C3B	0.026 (6)	0.124 (13)	0.053 (8)	0.043 (9)	-0.010 (5)	-0.014 (10)
C4B	0.033 (7)	0.066 (12)	0.082 (12)	0.026 (9)	-0.018 (7)	-0.014 (11)
Cl1	0.0459 (4)	0.0229 (3)	0.0229 (3)	0.0100 (2)	-0.0001 (2)	0.00124 (19)
01	0.0606 (13)	0.0428 (11)	0.0322 (10)	0.0239 (10)	0.0109 (9)	0.0091 (8)
O2	0.0767 (15)	0.0243 (9)	0.0382 (12)	0.0188 (9)	-0.0039 (10)	0.0027 (7)
O3	0.0780 (16)	0.0390 (11)	0.0502 (13)	0.0188 (11)	-0.0270 (11)	-0.0113 (9)

O4	0.0501 (12)	0.0571 (13)	0.0655 (15)) 0.02	252 (11)	0.0103 (10)	0.0076 (11	1)
Geometric parav	neters (Å °)							
	<i>inclus</i> (11,)							
Fe1—S1 ¹		2.2763 (5)	F	'e4—N2'''			2.026 (4)	
Fe1—S1 ¹¹		2.2763 (5)	F	$e4-N2^{1V}$			2.026 (4)	
Fe1—S1 ⁱⁱⁱ		2.2764 (5)	F	e4—N2B			2.059 (11)	
Fe1—S1		2.2764 (5)	F	e4—N2B ⁱⁱⁱ			2.059 (11)	
Fe1—S1 ^{iv}		2.2764 (5)	F	e4—N2B ^{iv}			2.059 (11)	
Fe1—S1 ^v		2.2764 (5)	F	e4—S2B			2.229 (2)	
Fe2—N1		2.0482 (18)	F	e4—S2B ⁱⁱⁱ			2.229 (2)	
Fe2—N1 ⁱⁱⁱ		2.0482 (18)	F	e4—S2B ^{iv}			2.229 (2)	
Fe2—N1 ^{iv}		2.0482 (18)	F	e4—S2 ⁱⁱⁱ			2.2535 (7)	
Fe2—S1 ⁱⁱⁱ		2.2434 (6)	F	e4—S2			2.2535 (8)	
Fe2—S1		2.2434 (6)	F	e4—S2 ^{iv}			2.2535 (7)	
Fe2—S1 ^{iv}		2.2434 (6)	S	2—C3			1.821 (4)	
S1-C2		1.821 (2)	N	J2—C4			1.480 (7)	
N1—C1		1.492 (3)	N	V2—H7			0.9200	
N1—H1		0.9200	N	V2—H8			0.9200	
N1—H2		0.9200	C	C3—C4			1.514 (7)	
C1—C2		1.521 (3)	C	С3—Н9			0.9900	
С1—Н3		0.9900	C	С3—Н10			0.9900	
C1—H4		0.9900	C	24—H11			0.9900	
С2—Н5		0.9900	C	24—Н12			0.9900	
С2—Н6		0.9900	S	2B—C3B			1.929 (16)	
Fe3—S2B ^{vi}		2.281 (2)	N	2B—C4B			1.49 (2)	
Fe3—S2B		2.281 (2)	N	V2B—H13			0.9200	
Fe3—S2B ^{iv}		2.281 (2)	N	V2B—H14			0.9200	
Fe3—S2B ⁱⁱⁱ		2.281 (2)	C	C3B—C4B			1.36 (3)	
Fe3—S2B ^{vii}		2.281 (2)	C	C3B—H15			0.9900	
Fe3—S2B ^{viii}		2.281 (2)	C	C3B—H16			0.9900	
Fe3—S2 ^{viii}		2.2869 (7)	C	C4B—H17			0.9900	
Fe3—S2 ⁱⁱⁱ		2.2869 (7)	C	24B—H18			0.9900	
Fe3—S2		2.2869 (7)	C	Cl1—O3			1.425 (2)	
Fe3—S2 ^{iv}		2.2869 (7)	C	Cl1—O4			1.426 (2)	
Fe3—S2 ^{vi}		2.2870 (7)	C	Cl1—O1			1.4369 (18)	
Fe3—S2 ^{vii}		2.2870 (7)	C	Cl1—O2			1.4447 (18)	
Fe4—N2		2.026 (4)						
S1 ⁱ —Fe1—S1 ⁱⁱ		87.042 (18)	N	J2—Fe4—N	2 ⁱⁱⁱ		92.34 (15)	
S1 ⁱ —Fe1—S1 ⁱⁱⁱ		180.00 (3)	N	J2—Fe4—N	2 ^{iv}		92.34 (15)	
S1 ⁱⁱ —Fe1—S1 ⁱⁱⁱ		92.959 (18)	N	V2 ⁱⁱⁱ —Fe4—	N2 ^{iv}		92.34 (15)	
S1 ⁱ —Fe1—S1		92.960 (18)	N	I2B—Fe4—	N2B ⁱⁱⁱ		92.4 (5)	
S1 ⁱⁱ —Fe1—S1		180.0	N	V2—Fe4—N	$2B^{iv}$		103.6 (3)	

S1 ⁱⁱⁱ —Fe1—S1	87.039 (18)	N2 ⁱⁱⁱ —Fe4—N2B ^{iv}	78.4 (3)
S1 ⁱ —Fe1—S1 ^{iv}	92.961 (18)	N2 ^{iv} —Fe4—N2B ^{iv}	17.7 (3)
S1 ⁱⁱ —Fe1—S1 ^{iv}	92.961 (18)	N2B—Fe4—N2B ^{iv}	92.4 (5)
S1 ⁱⁱⁱ —Fe1—S1 ^{iv}	87.039 (18)	N2B ⁱⁱⁱ —Fe4—N2B ^{iv}	92.4 (5)
S1—Fe1—S1 ^{iv}	87.039 (18)	N2B—Fe4—S2B	87.3 (3)
S1 ⁱ —Fe1—S1 ^v	87.041 (18)	N2B ⁱⁱⁱ —Fe4—S2B	91.5 (4)
$S1^{ii}$ —Fe1—S1 ^v	87.040 (18)	N2B ^{iv} —Fe4—S2B	176.1 (3)
S1 ⁱⁱⁱ —Fe1—S1 ^v	92.959 (18)	N2B—Fe4—S2B ⁱⁱⁱ	176.1 (3)
S1—Fe1—S1 ^v	92.960 (18)	N2B ⁱⁱⁱ —Fe4—S2B ⁱⁱⁱ	87.3 (3)
S1 ^{iv} —Fe1—S1 ^v	180.0	N2B ^{iv} —Fe4—S2B ⁱⁱⁱ	91.5 (4)
N1—Fe2—N1 ⁱⁱⁱ	93.02 (7)	S2B—Fe4—S2B ⁱⁱⁱ	88.91 (9)
$N1$ — $Fe2$ — $N1^{iv}$	93.02 (7)	$N2B$ —Fe4— $S2B^{iv}$	91.5 (4)
N1 ⁱⁱⁱ —Fe2—N1 ^{iv}	93.02 (7)	N2B ⁱⁱⁱ —Fe4—S2B ^{iv}	176.1 (3)
N1—Fe2—S1 ⁱⁱⁱ	91.05 (5)	N2B ^{iv} —Fe4—S2B ^{iv}	87.3 (3)
N1 ⁱⁱⁱ —Fe2—S1 ⁱⁱⁱ	87.26 (5)	S2B—Fe4—S2B ^{iv}	88.91 (9)
N1 ^{iv} —Fe2—S1 ⁱⁱⁱ	175.90 (5)	S2B ⁱⁱⁱ —Fe4—S2B ^{iv}	88.91 (9)
N1—Fe2—S1	87.26 (5)	N2—Fe4—S2 ⁱⁱⁱ	91.91 (11)
N1 ⁱⁱⁱ —Fe2—S1	175.90 (5)	N2 ⁱⁱⁱ —Fe4—S2 ⁱⁱⁱ	86.94 (11)
N1 ^{iv} —Fe2—S1	91.05 (5)	N2 ^{iv} —Fe4—S2 ⁱⁱⁱ	175.71 (11)
S1 ⁱⁱⁱ —Fe2—S1	88.65 (2)	N2—Fe4—S2	86.94 (11)
N1—Fe2—S1 ^{iv}	175.90 (5)	N2 ⁱⁱⁱ —Fe4—S2	175.71 (11)
N1 ⁱⁱⁱ —Fe2—S1 ^{iv}	91.05 (5)	N2 ^{iv} —Fe4—S2	91.91 (11)
N1 ^{iv} —Fe2—S1 ^{iv}	87.26 (5)	S2 ⁱⁱⁱ —Fe4—S2	88.86 (3)
S1 ⁱⁱⁱ —Fe2—S1 ^{iv}	88.65 (2)	N2—Fe4—S2 ^{iv}	175.71 (11)
S1—Fe2—S1 ^{iv}	88.65 (2)	N2 ⁱⁱⁱ —Fe4—S2 ^{iv}	91.91 (11)
C2—S1—Fe2	96.07 (8)	$N2^{iv}$ —Fe4—S2 ^{iv}	86.94 (11)
C2—S1—Fe1	114.36 (8)	S2 ⁱⁱⁱ —Fe4—S2 ^{iv}	88.86 (3)
Fe2—S1—Fe1	73.546 (18)	$S2$ —Fe4— $S2^{iv}$	88.86 (3)
C1—N1—Fe2	113.33 (14)	C3—S2—Fe4	96.60 (14)
C1—N1—H1	108.9	C3—S2—Fe3	113.93 (15)
Fe2—N1—H1	108.9	Fe4—S2—Fe3	73.27 (2)
C1—N1—H2	108.9	C4—N2—Fe4	114.7 (3)
Fe2—N1—H2	108.9	C4—N2—H7	108.6
H1—N1—H2	107.7	Fe4—N2—H7	108.6
N1—C1—C2	109.46 (17)	C4—N2—H8	108.6
N1—C1—H3	109.8	Fe4—N2—H8	108.6
С2—С1—Н3	109.8	H7—N2—H8	107.6
N1—C1—H4	109.8	C4—C3—S2	106.6 (3)
C2—C1—H4	109.8	С4—С3—Н9	110.4
H3—C1—H4	108.2	S2—C3—H9	110.4
C1—C2—S1	106.38 (15)	C4—C3—H10	110.4
C1—C2—H5	110.5	S2—C3—H10	110.4
S1—C2—H5	110.5	H9—C3—H10	108.6

C1—C2—H6	110.5	N2—C4—C3	112.4 (4)
S1—C2—H6	110.5	N2—C4—H11	109.1
Н5—С2—Н6	108.6	C3—C4—H11	109.1
S2B ^{vi} —Fe3—S2B	179.998 (1)	N2—C4—H12	109.1
S2B ^{vi} —Fe3—S2B ^{iv}	93.64 (9)	C3—C4—H12	109.1
S2B—Fe3—S2B ^{iv}	86.37 (9)	H11—C4—H12	107.9
S2B ^{vi} —Fe3—S2B ⁱⁱⁱ	93.64 (9)	C3B—S2B—Fe4	90.9 (5)
S2B—Fe3—S2B ⁱⁱⁱ	86.37 (9)	C3B—S2B—Fe3	108.1 (6)
S2B ^{iv} —Fe3—S2B ⁱⁱⁱ	86.37 (9)	Fe4—S2B—Fe3	73.83 (7)
S2B ^{vi} —Fe3—S2B ^{vii}	86.36 (9)	C4B—N2B—Fe4	112.1 (9)
S2B—Fe3—S2B ^{vii}	93.63 (9)	C4B—N2B—H13	109.2
S2B ^{iv} —Fe3—S2B ^{vii}	180.00 (10)	Fe4—N2B—H13	109.2
S2B ⁱⁱⁱ —Fe3—S2B ^{vii}	93.64 (9)	C4B—N2B—H14	109.2
S2B ^{vi} —Fe3—S2B ^{viii}	86.36 (9)	Fe4—N2B—H14	109.2
S2B—Fe3—S2B ^{viii}	93.63 (9)	H13—N2B—H14	107.9
S2B ^{iv} —Fe3—S2B ^{viii}	93.64 (9)	C4B—C3B—S2B	106.6 (13)
S2B ⁱⁱⁱ —Fe3—S2B ^{viii}	179.998 (1)	C4B—C3B—H15	110.4
S2B ^{vii} —Fe3—S2B ^{viii}	86.36 (9)	S2B—C3B—H15	110.4
S2 ^{viii} —Fe3—S2 ⁱⁱⁱ	180.00 (5)	C4B—C3B—H16	110.4
S2 ^{viii} —Fe3—S2	92.77 (3)	S2B—C3B—H16	110.4
S2 ⁱⁱⁱ —Fe3—S2	87.23 (3)	H15—C3B—H16	108.6
S2 ^{viii} —Fe3—S2 ^{iv}	92.77 (3)	C3B—C4B—N2B	111.5 (14)
S2 ⁱⁱⁱ —Fe3—S2 ^{iv}	87.23 (3)	C3B—C4B—H17	109.3
S2—Fe3—S2 ^{iv}	87.23 (3)	N2B—C4B—H17	109.3
S2 ^{viii} —Fe3—S2 ^{vi}	87.23 (3)	C3B—C4B—H18	109.3
S2 ⁱⁱⁱ —Fe3—S2 ^{vi}	92.77 (3)	N2B—C4B—H18	109.3
S2—Fe3—S2 ^{vi}	180.0	H17—C4B—H18	108.0
S2 ^{iv} —Fe3—S2 ^{vi}	92.77 (3)	O3—Cl1—O4	110.49 (15)
S2 ^{viii} —Fe3—S2 ^{vii}	87.23 (3)	O3—Cl1—O1	109.78 (14)
S2 ⁱⁱⁱ —Fe3—S2 ^{vii}	92.77 (3)	04—Cl1—O1	109.85 (13)
S2—Fe3—S2 ^{vii}	92.77 (3)	O3—Cl1—O2	109.71 (13)
S2 ^{iv} —Fe3—S2 ^{vii}	179.999 (1)	O4—Cl1—O2	108.82 (14)
S2 ^{vi} —Fe3—S2 ^{vii}	87.23 (3)	O1—Cl1—O2	108.16 (12)
N1—Fe2—S1—C2	21.81 (10)	S2 ^{viii} —Fe3—S2—Fe4	-136.322 (12)
N1 ^{iv} —Fe2—S1—C2	114.79 (9)	S2 ⁱⁱⁱ —Fe3—S2—Fe4	43.680 (12)
S1 ⁱⁱⁱ —Fe2—S1—C2	-69.30 (8)	S2 ^{iv} —Fe3—S2—Fe4	-43.680 (12)
S1 ^{iv} —Fe2—S1—C2	-157.98 (8)	S2 ^{vii} —Fe3—S2—Fe4	136.320 (12)
N1—Fe2—S1—Fe1	135.45 (5)	N2 ⁱⁱⁱ —Fe4—N2—C4	-175.7 (3)
N1 ^{iv} —Fe2—S1—Fe1	-131.57 (5)	N2 ^{iv} —Fe4—N2—C4	91.9 (4)
S1 ⁱⁱⁱ —Fe2—S1—Fe1	44.341 (11)	S2 ⁱⁱⁱ —Fe4—N2—C4	-88.6 (3)
S1 ^{iv} —Fe2—S1—Fe1	-44.341 (11)	S2—Fe4—N2—C4	0.1 (3)

$S1^{i}$ —Fe1—S1—C2	-134.32 (9)	Fe4—S2—C3—C4	44.5 (3)
S1 ⁱⁱⁱ —Fe1—S1—C2	45.68 (9)	Fe3—S2—C3—C4	119.0 (3)
S1 ^{iv} —Fe1—S1—C2	132.87 (8)	Fe4—N2—C4—C3	30.6 (5)
S1 ^v —Fe1—S1—C2	-47.13 (8)	S2—C3—C4—N2	-51.4 (5)
S1 ⁱ —Fe1—S1—Fe2	136.408 (8)	N2B—Fe4—S2B—C3B	27.4 (7)
S1 ⁱⁱⁱ —Fe1—S1—Fe2	-43.592 (8)	N2B ⁱⁱⁱ —Fe4—S2B—C3B	119.7 (7)
S1 ^{iv} —Fe1—S1—Fe2	43.592 (8)	S2B ⁱⁱⁱ —Fe4—S2B—C3B	-153.1 (6)
S1 ^v —Fe1—S1—Fe2	-136.406 (8)	S2B ^{iv} —Fe4—S2B—C3B	-64.1 (6)
N1 ⁱⁱⁱ —Fe2—N1—C1	-179.13 (15)	N2B—Fe4—S2B—Fe3	136.0 (4)
N1 ^{iv} —Fe2—N1—C1	-85.94 (19)	N2B ⁱⁱⁱ —Fe4—S2B—Fe3	-131.7 (3)
S1 ⁱⁱⁱ —Fe2—N1—C1	93.56 (15)	S2B ⁱⁱⁱ —Fe4—S2B—Fe3	-44.47 (4)
S1—Fe2—N1—C1	4.96 (15)	S2B ^{iv} —Fe4—S2B—Fe3	44.47 (4)
Fe2—N1—C1—C2	-37.5 (2)	S2B ^{iv} —Fe3—S2B—C3B	42.2 (5)
N1—C1—C2—S1	57.4 (2)	S2B ⁱⁱⁱ —Fe3—S2B—C3B	128.8 (5)
Fe2—S1—C2—C1	-46.89 (16)	S2B ^{vii} —Fe3—S2B—C3B	-137.8 (5)
Fe1—S1—C2—C1	-121.55 (14)	S2B ^{viii} —Fe3—S2B—C3B	-51.2 (5)
N2—Fe4—S2—C3	-23.37 (18)	S2B ^{iv} —Fe3—S2B—Fe4	-43.29 (4)
N2 ^{iv} —Fe4—S2—C3	-115.61 (18)	S2B ⁱⁱⁱ —Fe3—S2B—Fe4	43.29 (4)
S2 ⁱⁱⁱ —Fe4—S2—C3	68.61 (15)	S2B ^{vii} —Fe3—S2B—Fe4	136.71 (4)
S2 ^{iv} —Fe4—S2—C3	157.50 (15)	S2B ^{viii} —Fe3—S2B—Fe4	-136.71 (4)
N2—Fe4—S2—Fe3	-136.42 (10)	N2B ⁱⁱⁱ —Fe4—N2B—C4B	-96.9 (14)
N2 ^{iv} —Fe4—S2—Fe3	131.34 (11)	N2B ^{iv} —Fe4—N2B—C4B	170.6 (12)
S2 ⁱⁱⁱ —Fe4—S2—Fe3	-44.441 (14)	S2B—Fe4—N2B—C4B	-5.5 (11)
S2 ^{iv} —Fe4—S2—Fe3	44.441 (14)	S2B ^{iv} —Fe4—N2B—C4B	83.3 (11)
S2 ^{viii} —Fe3—S2—C3	133.80 (16)	Fe4—S2B—C3B—C4B	-54.2 (13)
S2 ⁱⁱⁱ —Fe3—S2—C3	-46.20 (16)	Fe3—S2B—C3B—C4B	-127.5 (12)
S2 ^{iv} —Fe3—S2—C3	-133.55 (16)	S2B—C3B—C4B—N2B	59.4 (18)
S2 ^{vii} —Fe3—S2—C3	46.45 (16)	Fe4—N2B—C4B—C3B	-32.3 (19)

Symmetry codes: (i) *x*-*y*+2/3, *x*+1/3, -*z*+1/3; (ii) -*x*+2/3, -*y*+4/3, -*z*+1/3; (iii) -*x*+*y*, -*x*+1, *z*; (iv) -*y*+1, *x*-*y*+1, *z*; (v) *y*-1/3, -*x*+*y*+1/3, -*z*+1/3; (vi) -*x*+2/3, -*y*+4/3, -*z*+4/3; (vii) *y*-1/3, -*x*+*y*+1/3, -*z*+4/3; (viii) *x*-*y*+2/3, *x*+1/3, -*z*+4/3.

TT 1 1	1 ,	18	0)
Hvdrogen-bond	geometry	(A.	Ύ)
	Securery	(,	

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O2	0.92	2.28	3.130 (3)	154
N1—H2···O3 ^{ix}	0.92	2.40	3.162 (3)	140
N2—H7…O1 ⁱⁱⁱ	0.92	2.30	3.110 (4)	147
N2—H8…O2	0.92	2.39	3.274 (4)	161
N2B—H13…O2	0.92	2.41	2.984 (12)	121
N2B—H14…O1	0.92	2.27	3.112 (11)	152
Summatry adds: (iv) $r_{1} + \frac{1}{2} + \frac{2}{2} - \frac{1}{2}$	2/2 (iii) $-m+1$			

Symmetry codes: (ix) x-y+1/3, x+2/3, -z+2/3; (iii) -x+y, -x+1, z.

